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Why consider non-probability samples

▶ Probability based samples have long been an established way of
conducting surveys

▶ Problems with traditional probability-based surveys:
Lowering response rates, increased burden and cost of data
collection

▶ New opportunities:
Availability of data from variety of sources, related to the Internet,
computers, etc.
The demand for exploiting these resources is steadily growing.

▶ However, such “opportunistic” (non-probability based) data cannot
be automatically regarded as representative, since this information is
not based on a well designed random sample.

▶ Methods have been developed to account for potential selection bias
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Quasi-randomization approach

▶ Assume the existence of a latent mechanism that governs the
non-probability sample selection.

▶ Basic idea: use information from available probability-based
(“reference”) sample to uncover latent probabilities to participate in
the non-probability survey

▶ Use these participation probabilities in estimation of target finite
population quantities.

▶ We compare several methods for estimation of participation
probabilities
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Setup and notation
U target finite population of size N
µ =

∑
i∈U yi/N target quantity

Sc non-probability (convenience) sample
(yi,xi) observed on Sc

Ici inclusion indicator for Sc

πci = P{Ici = 1 | i ∈ U} (not known)

Sr probability (reference) sample
xi observed on Sr

Iri inclusion indicator for Sr,
πri = P{Iri = 1 | i ∈ U} (known)

We wish to estimate πci, then Inverse Propensity Weighted (IPW) estimator
of population mean µ is

µ̂ =

∑
i∈Sc

yi/π̂c∑
i∈Sc

1/π̂c

Sc Sr

yi ✓
xi ✓ ✓

Ici 1
πci ✕

Iri 1
πri ✓ ✓
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Pseudo-likelihood approach of Chen, Li and Wu(2020)

Consider Ici ∼ Bernoulli(πci) on population U :

ℓCLW (β) =
∑
i∈U

{Ici log [πci(β)] + (1− Ici) log [1− πci (β)]}

=
∑
i∈Sc

log

[
πci(β)

1− πci (β)

]
+
∑
i∈U

log [1− πci (β)] ,

and logit [πci(β)] = βTxi.

Since U is not available, use pseudo-likelihood:

ℓ̂CLW (β) =
∑
i∈Sc

log

[
πci(β)

1− πci (β)

]
+

∑
i∈Sr

wrilog [1− πci (β)],

where wri = π−1
ri .
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Sample based approach (under negligible sampling overlap)

Elliott (2009)

Consider:
πzi = P{Izi = 1|xi}
on the pooled set

Sc Sr Sc ∩ Sr

Iz 1 0 negligible

Under “negligible” sampling overlap, approximate relationship holds:

πzi ≈
πci

πci + πri
.

A two-step procedure:

Step 1: Estimate πzi using standard methods

Step 2: Find πci from πzi ≈ πci/(πci + πri)
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Sample based approach (unknown overlap of any size)
Savitsky, Williams, Gershunskaya and Beresovsky (2023)

Stacked sample: S = Sc + Sr (overlapping units appear in S twice)

πzi = P{Izi = 1|i ∈ S} is probability to be in Sc for units in stack S

Key relationship for independent sampling probabilities (KRISP):
Under stacked samples setup, assuming Sc and Sr are

independently selected from U, relationship

πzi =
πci

πci + πri

✓ holds exactly,

✓ regardless of the size of sampling overlap.

Sc Sr

Iz 1 0
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Implicit Logistic Regression (ILR)

Beresovsky(2019):

The log-likelihood for observed Bernoulli variable Izi is

ℓILR(β) =
∑
i∈Sc

log (πzi[πci(β)]) +
∑
i∈Sr

log (1− πzi [πci(β)]) ,

where πzi can be treated as a composite function, based on KRISP,

πzi = πzi[πci(β)] =
πci(β)

πri + πci(β)

and logit [πci(β)] = βTxi.

Take derivatives wrt β and solve estimating equations,
thus estimating πci directly from the likelihood.
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Asymptotic variances of the estimates of µ and β

Var(µ̂)
.
= Var[U(µ)]− 2bTCov[U(µ), S(β)] + bTVar[S(β)]b,

Var(β̂)
.
= H−1Var[S(β)]H−1,

where b = S−1
β UT

β , Uβ = E[∂U(µ)/∂βT ], Sβ = E[∂S(β)/∂β], H = −Sβ.

Both methods, CLW and ILR, are asymptotically equivalent:

Var

(
µ̂

β̂

)
∼ O

(
1

nr
+

1

nc

)
= O

(
1

min(nr, nc)

)
.

Note that

Var[S(β)] = Var[Sc(β)] + Var[Sr(β)].

The methods differ mostly due to contributions from Var[Sr(β)].
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Relative efficiency of ILR and CLW estimates of propensity
model parameter
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Classification Trees

We can use ILR and CLW methods with a classification trees algorithm.

We expect: a sample-based likelihood would be more efficient
compared to a pseudo-likelihood, especially as the regression tree grows
and its nodes are based on progressively smaller samples

For a given node g, find an optimal binary split based on a given
covariate:

(1) find (πcgL, πcgR), estimates of probabilities in left and right
branches, on a grid of possible splits;

(2) choose an optimal split based on an objective function
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Homogeneous groups (based on CLW pseudo-likelihood)

The algorithm splits data into homogeneous groups g = 1, . . . , G, so
that all units in a given group have the same probabilities πcg.

Under (CLW) pseudo-likelihood:

π̂cg =
ncg

N̂g

, where N̂g =
∑
i∈g

wri.

Estimated entropy impurity criteria:

ÎCLW = −
G∑

g=1

N̂g

N̂
[π̂cg log(π̂cg) + (1− π̂cg) log(1− π̂cg)]
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Homogeneous groups (based on stacked-samples setup)

For sample-based (ILR) approach: no explicit expression for πcg. It can
be found as a solution of equation∑

i∈Sg

πri
πri + πcg

= nrg,

where Sg is the part of stacked sample S belonging to group g.

Estimated entropy impurity criteria:

ÎILR = −
G∑

g=1

 ∑
i∈Scg

log π̂zi,g +
∑
i∈Srg

log(1− π̂zi,g)

 ,

where π̂zi,g =
π̂cg

πri+π̂cg
.
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Simulation example: setup

Suppose we already have a grown tree, up to some level g.
We focus on splitting node g into two parts.

The setup is:
Ng = 1, 000 is population size
Covariate: xig ∼ N(0, 1)
Study variable: yig = 1 + xig + ϵig, with ϵig ∼ N(0, 1.52)

True convenience sample probabilities:
πcg,L = 0.80 for i with xig <= 0,
πcg,R = 0.20 for i with xig > 0.
Hence, convenience sample size is ncg ≈ 500.

PPS design for probability sample πrg,i ∝ xig
Scenarios: nrg = 100, 500

1000 simulation runs
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Reference sample scenarios: nrg ∈ {100, 500}

Estimators: CLW, ILR (stacked samples)

nr = 100 nr = 500 nr = 100 nr = 500

(a) πcg,L = 0.80 (b) πcg,R = 0.20
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Estimates of µ

Estimators: Unweighted, CLW, ILR (stacked sample)

nr = 100 nr = 500

µ̂ =
∑

i∈Sc
yi/π̂c∑

i∈Sc
1/π̂c

nr = 100 nr = 500
Bias MSE Bias MSE

Unweighted -0.481 0.234 -0.481 0.234
CLW -0.128 0.042 -0.047 0.023

ILR (stack) 0.012 0.011 0.001 0.007
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Summary

▶ The pseudo-likelihood CLW and stacked-samples based ILR
approaches are asymptotically equivalent

▶ The stacked-samples ILR method is more efficient compared to CLW
under practically important scenarios of:
- a small reference sample and
- a low overlap in covariates-defined domains (resulting in an
insufficient representation of some population groups in either of the
two samples)

▶ Future research: Linkage may lead to better estimates if a good
matching quality could be achieved. However, thinking about the
balance between cost/effort spent and the quality of record linkage,
the question in context of estimation of participation probabilities is:
Do we really have to link?
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CONTACT INFORMATION

Gershunskaya.Julie@bls.gov

Thank you!


