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Why consider non-probability samples
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Probability based samples have long been an established way of
conducting surveys

Problems with traditional probability-based surveys:
Lowering response rates, increased burden and cost of data
collection

New opportunities:

Availability of data from variety of sources, related to the Internet,
computers, etc.

The demand for exploiting these resources is steadily growing.

However, such “opportunistic” (non-probability based) data cannot
be automatically regarded as representative, since this information is
not based on a well designed random sample.

Methods have been developed to account for potential selection bias




Quasi-randomization approach

P> Assume the existence of a latent mechanism that governs the
non-probability sample selection.

» Basic idea: use information from available probability-based
( “reference”) sample to uncover latent probabilities to participate in
the non-probability survey

P> Use these participation probabilities in estimation of target finite
population quantities.

» We compare several methods for estimation of participation
probabilities
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Setup and notation

U target finite population of size N
= cu¥i/N target quantity

S non-probability (convenience) sample
(yi,x;) observed on S,

I.; inclusion indicator for S,

7ei = P{I.; = 1|1 € U} (not known)

S, probability (reference) sample
X; observed on S,

I,.; inclusion indicator for S,.,

7 = P{I.; =1]i€ U} (known)

X SN

We wish to estimate 7.;, then Inverse Propensity Weighted (IPW) estimator

of population mean p is

~ Ziese yi/’ﬁ-c
Dies, 1/
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Pseudo-likelihood approach of Chen, Li and Wu(2020)

Consider I.; ~ Bernoulli(,;) on population U:

ECLW(B) = Z {Leilog [mei(B)] + (1 — Iei) log [1 — me; (B)]}

€U
_Zlo [1_%2 ] —|—Zlog — 7 (B)],
€S, €U

and logit [ (8)] = B x;.

Since U is not available, use pseudo-likelihood:
JCLW _ mei(B) A }
1 B) = Z log T=ra (@) + Z wyilog [1 — me (B)],

where w,; = ",
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Sample based approach (under negligible sampling overlap)

Elliott (2009) I,,=0
\ overlap
C onsi d er: o
i = P{L; = 1|x;} ‘ S. S, S.NS,
I| 1 0 negligible

on the pooled set
Under “negligible” sampling overlap, approximate relationship holds

T A Tei
i ~ .
Tei + i

A two-step procedure:
Step 1: Estimate 7,; using standard methods

Step 2: Find m¢; from 7. & mei /(7ei + i)
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Sample based approach (unknown overlap of any size)
Savitsky, Williams, Gershunskaya and Beresovsky (2023)

Stacked sample: S = S, + S, (overlapping units appear in S twice)

Izi=1 SC Sr
|1 0

Izi=

7. = P{I,; = 1|i € S} is probability to be in S, for units in stack S

Key relationship for independent sampling probabilities (KRISP):
Under stacked samples setup, assuming S, and S, are
independently selected from U, relationship

Tei

Tzi =
Tei + Tpi

v holds exactly,
v regardless of the size of sampling overlap.




Implicit Logistic Regression (ILR)
Beresovsky(2019):

The log-likelihood for observed Bernoulli variable I,; is

CERB) = log (milmai(B)]) + ) log (1 — mai [7ai(B)]) 4

1€Se i€Sy
where 7,; can be treated as a composite function, based on KRISP,

Tei (ﬁ)

Tai = in[ﬂ'()i(16>] = m

and logit [7;(8)] = BTx;.

Take derivatives wrt 3 and solve estimating equations,
thus estimating 7.; directly from the likelihood.
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Asymptotic variances of the estimates of 1 and (3
Var(ji) = Var[U (u)] — 2b" Cov[U (1), S(8)] + b Var[S(8)]b,

[05(8)/08], H = =S

Var(8) = H 'Var[S(B)|H ',
=E

where b = SglUg, Up = E[0U(u)/0B8"], Sa

Both methods, CLW and ILR, are asymptotically equivalent:
1 1
) =0 ()
min(n,, ne)

Var(lg) ~O<n1—|—n
Note that
Var[S(8)] = Var[S.(8)] + Var[S,.(8)].
=BlS

The methods differ mostly due to contributions from Var[S,.(3)]
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Relative efficiency of ILR and CLW estimates of propensity

model parameter

f — 005 - 0.19 -- 051 -- 0.85

Low overlap

1.6{High overlap 1.6

SEILR(ﬁcl) /SECLW(Bcl)

0.00 025 050 0.75 1.00
f
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Classification Trees

We can use ILR and CLW methods with a classification trees algorithm.

We expect: a sample-based likelihood would be more efficient
compared to a pseudo-likelihood, especially as the regression tree grows
and its nodes are based on progressively smaller samples

For a given node g, find an optimal binary split based on a given
covariate:

(1) find (meqr, Tegr), estimates of probabilities in left and right
branches, on a grid of possible splits;

(2) choose an optimal split based on an objective function
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Homogeneous groups (based on CLW pseudo-likelihood)

The algorithm splits data into homogeneous groups g = 1,...,G, so
that all units in a given group have the same probabilities 7.

Under (CLW) pseudo-likelihood:
Mg = Tleg where N, = Zw”'
g Ng’ 97
1€9
Estimated entropy impurity criteria:

G A

N N, .. . . .
JCLW = _ Z ﬁg [TTeg log(Treg) + (1 — 7req) log(1 — 7ey)]
g=1
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Homogeneous groups (based on stacked-samples setup)

For sample-based (ILR) approach: no explicit expression for 7.,. It can
be found as a solution of equation

Trg
Z T T = n"'g’
i€S, T4 cg

where S, is the part of stacked sample S belonging to group g.

Estimated entropy impurity criteria:

G
fILR = - Z Z IOg 7A"'zi,g + Z 10g(1 - ﬁz@Q) )

g=1 |i€S¢q 1€Srg

Teg
Tri “Fﬁ'cg :

where 7; , =
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Simulation example: setup

Suppose we already have a grown tree, up to some level g.
We focus on splitting node g into two parts.

The setup is:
Ny = 1,000 is population size
Covariate: x5 ~ N(0,1)
Study variable: y;; = 14 x5 + €, with €;4 ~ N(0,1.5)
True convenience sample probabilities:
Teg,r, = 0.80 for 4 with x;, <=0,
Teg,r = 0.20 for 7 with ;5 > 0.
Hence, convenience sample size is 1.4 ~ 500.

PPS design for probability sample 7,.4; o< ;g
Scenarios: n,4 = 100, 500

1000 simulation runs
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Reference sample scenarios: nrg € {100,500}

Estimators:  CLW, ILR (stacked samples)

n, = 100 n, = 500 n, = 100 n, = 500

r=100 r=500 r=100 nr=500

m
(eis) w1
e
m

(roeis) w1l
m

(v0mis) w1

(0mis) w7l

(a) Teg.. = 0.80 (b) 7eg,r = 0.20
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Estimates of p

Estimators:  Unweighted, CLW, ILR (stacked sample)
n, = 100 n, = 500

n_r=100 n_r=500

P ZiESc yi/ﬁc
W= s 17

n, =100 n, = 500 025]
Bias MSE | Bias MSE : '
Unweighted | -0.481 0234 | -0.481 0234 I
CLW | -0128 0.042 | -0.047 0.023
ILR (stack) | 0.012 0.011 | 0.001 0.007 oo N =
o = e 5
g g g g
g z g z

t

‘iBtSm 18
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Summary

>

>

The pseudo-likelihood CLW and stacked-samples based ILR
approaches are asymptotically equivalent
The stacked-samples ILR method is more efficient compared to CLW
under practically important scenarios of:
- a small reference sample and
- a low overlap in covariates-defined domains (resulting in an
insufficient representation of some population groups in either of the
two samples)
Future research: Linkage may lead to better estimates if a good
matching quality could be achieved. However, thinking about the
balance between cost/effort spent and the quality of record linkage,
the question in context of estimation of participation probabilities is:
Do we really have to link?
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