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Introduction

 Cost of survey data collection is on the rise:

 Survey response rates continue to decline despite more contact 
mode options (e.g., text, telephone).

 The challenge is to identify cost and time-efficient ways to 
increase the likelihood of getting a response.

 Paradata contain a vast amount of information on when and how 
sampled persons are contacted and the outcome of each contact 
attempt.

 Can the analysis of paradata help inform the contact strategies and 
create efficiencies?
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Related Work

 Paradata have been utilized to group households with similar 
contact history and outcomes (Durrant, G.B., Maslovskaya, O. 
and Smith, P.W., 2019).

 Propensity modeling informed by paradata predicts respondent 
likelihoods (Fang, Qixiang, et al., 2021).

 Studies used paradata to identify the optimal timing for reaching 
out in surveys (Shino, E., & McCarty, C. 2020).
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Goals
This study aims to:

Understand how machine learning can be used to generate 
hypotheses from paradata to inform contact strategy.

Gather causal evidence for hypotheses.

Provide actionable insights for improving survey data 
collection.
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Data
Medical Expenditure Panel Survey (MEPS) 

• Nationally representative survey designed to explore 
healthcare use and expenditures in the U.S. 

• Conducted by Westat to support the Agency for Healthcare 
Research and Quality (AHRQ).

• MEPS Household Component (MEPS-HC) collects data from a 
nationally representative sample of households, drawn from 
the National Health Interview Survey (NHIS).

• High round 1 response rates are crucial to obtaining 
representative data.
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Data

• MEPS Household Component 
Spring 2022 Round 1 

• 8,593 households with at 
least two contact attempts 
from 10,071 households 

• 4,707 complete, 3,886 
incomplete (complete rate: 
54.8%)

• Paradata: Contact mode (In-
Person, Telephone, Text, E-
mail, or Mail) of each 
contact.
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Unsupervised Machine Learning: Clustering

 Clustering algorithms automatically group similar observations.

 The measurement of similarities and number of groups are defined by 
humans.



Clustering Methods on Paradata

Observation: Each household is represented by its contact mode 
sequence from contact 2 onward.

 Similarity: Calculated sequence distance using optimal matching 
(number of operation to transform sequences).

 Clustering: Partitioning Around Medoids algorithm



Clustering Results
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Cluster 1 (64.1% complete) Cluster 2 (44.0% complete)

Cluster 3 (27.6% complete) Cluster 4 (30.0% complete) Cluster 5 (72.0% complete)
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Clustering Results
Cluster 1 Cluster 2 Cluster 3 Cluster 4 P

n 1617 2122 709 1059
Contact 2-4 

(%) Telephone 713 (44.1) 174 ( 8.2) 237 (33.4) 70 (6.6) <0.001

In Person 113 (7.0) 1255 (59.1) 181 (25.5) 705 (66.6) 

Mix 355 (22.0) 396 (18.7) 155 (21.9) 181 (17.1) 

Other 309 (19.1) 297 (14.0) 136 (19.2) 103 ( 9.7) 

Short 127 ( 7.9) 0 ( 0.0) 0 ( 0.0) 0 ( 0.0) 

Telephone: At least one telephone contact sequence during contact 2-4

In Person: Only in-person contact during contact 2-4

Mix: Mixed in-person and telephone contact during contact 2-4

Other: Other contact sequences during contact 2-4

Short: Contact sequence shorter than 4



Hypothesis

 Hypothesis: 

• Machine learning suggests that early telephone follow-ups after an 
initial in-person contact lead to a higher success rate.

 Challenges in Testing Hypothesis:

• Households are not randomly assigned to contact modes.

• Confounding factors such as household characteristics may make it 
difficult to determine the causal effects.
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Target Trial Emulation

 Question: Is early telephone contact sequence associated with a higher 
success rate?

 Cohort: Households (Spring 2022, Round 1) with in-person first contact 
and telephone or in-person contacts during contacts 2-4 

 Exposure Group: 

• 1. Treatment: Telephone sequence contact during contact 2-4.

• 2. Control: Only in-person contact during contact 2-4.

 Causal Inference: Propensity score matching to mimic randomization.

 Outcomes: Response status during contacts 2-4 and days until completion.
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Results

 Propensity Score Matching: Standardized differences are below 
10%, indicating a well-balanced cohort.

 Statistical Analysis: 

• Telephone follow-ups were associated with increased likelihood of 
completion and positive response during contact 2-4.

• The Kaplan-Meier analysis suggests that households with telephone 
follow-ups during contacts 2-4 complete the survey faster after 
contact 4.
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Potential New Data Collection Strategies

 For households classified as likely to participate during the pre-round call 
period, prioritize telephone follow-ups after the initial in-person contact.

 For households without phone numbers, make efforts to match or obtain 
phone numbers before continuing with in-person contacts.

 Make appointment attempts during the pre-round call period.

 Ensure that face sheet information from NHIS data is available to guide 
the selection of the most effective interview mode for each household.
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Conclusion and Future Directions

 Conclusion: Machine learning can improve data collection strategies by 
generating actionable insights from paradata-focused hypotheses.

 Future Work:

• Gather information on the impact of the new strategies.

• Generate and evaluate additional hypotheses.

• Develop machine learning models for contact recommendations.
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Contacts:

Mengshi (Jack) Zhou, Ph.D.
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jackzhou@westat.com
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Associate Vice President, Westat
gizemkorkmaz@westat.com
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Clustering Methods on Paradata

 Observation: Each household is represented by its contact mode 
sequence from contact 2 onward.

 Similarity: Calculated sequence distance using optimal matching (numer 
of operation to transform sequences).

• Substitution cost = 2

• Insertion cost = 1

 Clustering: Partitioning Around Medoids algorithm

Contact 2 Contact 3 Contact 4
Household 1 In-person Telephone In-person
Household 2 In-person In-person
Operation None (0) Substitution (2) Insertion (1)



Treatment (At least one 
telephone sequence contact 

during contact 2-4)

Control (Only in-person 
contact during contact 2-4 )

Standard 
Difference (%)

n 764 764

ACR Likely 296 (38.74) 292 (38.22) 1.07
Unlikely 77 (10.08) 75 (9.82) 0.87
Mutual 58 (7.59) 61 (7.98) -1.48

Unknown 333 (43.59) 336 (43.98) -0.79
Gender Female 412 (53.93) 406 (53.14) 1.58

Male 342 (44.76) 354 (45.16) -0.79
Unknown 10 (1.31) 13 (1.70) -3.45

Race White 532 (69.63) 537 (70.29) -1.42
Black 109 (14.27) 102 (13.35) 2.62
Asian 61 (7.98) 57 (7.46) 1.93

Multiple 11 (1.44) 10 (1.31) 1.10
Other 1 (0.13) 0 (0.00) 3.62

Unknown 65 (6.54) 64 (7.59) -4.23
Age =< 25 65 (8.51) 64 (8.38) 1.13

26-54 532 (68.46) 519 (67.93) 0.47
>=65 176 (23.04) 181 (23.69) -1.55

House Size 1 211 (27.62) 223 (29.19) -3.51

2-4 476 (62.30) 472 (61.78) 1.08
>= 5 77 (10.08) 69 (9.03) 3.48

Outcome01 Success 259 (33.90) 240 (31.41) 5.25
Fail 524 (66.10) 505 (68.59) -5.25

Propensity Score Matching
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 All standard 
differences are 
below 10%.

 Means our analytic 
cohort is well-
balanced across the 
potential 
confounders.

 Effectively mimicking 
randomization.



Causal Inference: Propensity Score Matching

 Propensity score matching (PSM) is a 
commonly used method to establish causality 
from observational studies.

 PSM pairs observations from different groups 
based on their likelihood of receiving treatment 
given a set of observed covariates. 

 PSM emulates the randomization of treatment 
in observational studies by balancing the 
distribution of observed covariates between 
the treatment and control groups.
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Outcome during contact 2-4
 A multinomial logistic regression model suggests: 

• Households with telephone follow-ups are 2 times more likely to complete 
during contact 2-4 as compared to those with in-person follow-ups.

• Households with telephone follow-ups are 21% more likely to have a positive 
response during contact 2-4 as compared to those with in-person follow-ups.
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Days until the complete interview after contact 4

 The Kaplan-Meier curve suggests that households with telephone 
follow-ups during contacts 2-4 complete the survey faster after 
contact 4.
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