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Overview:
• The need for Disclosure Avoidance and how it’s done
• The perspective offered by Statistical Mechanics in the context of privacy
• The relevant elements of Statistical Mechanics.

• Simulated Annealing (SA) and Markov Chain Monte Carlo (MCMC) simulations
• Changing perspective: DP noise injection vs. DP noise evolution.
• Unsolving optimization problems as a noise-evolution method (as opposed to a ‘noise-injection’ 

method).

• The Boltzmann Machine Privacy Framework (BMPF)
• Description of consensus functions for histograms 
• Generating ‘candidate’ histograms 
• How the BMPF satisfies (𝛜𝛜(t), 𝛅𝛅(k))-DP

• Experimental Results
• MCMC burn-in issues, ways to ameliorate this i.e., stopping criteria.

• Conclusion
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Disclosure Avoidance and What it Entails
• Can’t publish actual datasets collected by CB

• Privacy laws prohibit disclosure.  E.g., Title 13, Title 26 and others.
• Publishing data with many traditional DA methods can still disclose private 

information (e.g., Governor Weld’s medical records were ‘anonymized’) 
• But good public policy-making requires some use of the data.

• How can we publish data yet maintain privacy?
• Differential Privacy (2006), formerly referred to as epsilon 

indistinguishability provides a methodology that guarantees a 
quantifiable level of privacy via a ‘privacy budget’.

• It infuses data with ‘calibrated noise’ to achieve this quantifiable level 
of privacy.
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Examples:

• Histograms are a common type of dataset developed at Census
• They reflect counts of entities (people) that are associated with 

certain mutually exclusive combinations of attributes
• Publishing actual counts can lead to complete privacy loss
• DP modifies these counts in a probabilistic manner such that there is 

a quantifiable level of privacy yet still maintains usability/utility.
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Definition of Differential Privacy
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E.g., adding random noise to pixels in a picture to blur the faces of people
in the picture making it hard to identify the people in the picture, 
yet enabling a fairly accurate counting of the number of people.

Quantifies the fundamental tradeoff between accuracy and privacy.

Lots of way to create ‘noisy data’: 1. Add random variates to the actual data.
2. Consider the actual data as the ‘optimum data’ in an 
    optimization problem and produce sub-optimum data.



Simulated Annealing and Markov Chains
Simulated Annealing (SA) circa 1983 is a meta-heuristic that can ‘solve’ a wide variety of 
optimization problems.
Hallmarks:

• Based on the Metropolis Algorithm (an accept/reject method), it enables Markov Chain Monte 
Carlo (MCMC) sampling. 

• SA converges in probability under WLLN to the globally optimal solution:
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The MAC:  Let



Simulated Annealing
• Used to solve a wide variety of optimization problem by virtue of its simplicity, 

convergence properties and generalizability.
• Requirements:

1. A well defined configuration space.
2. A well defined objective function.
3. A ‘good’ candidate generation scheme.
4. An appropriate ‘cooling schedule’.  (We’ll just need a fixed temperature.)

• MA/SA effectively moves (transitions) from one configuration to another under 
the influence of these four elements.

• Transition probabilities                  Markov Chain
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Instead of using SA to find the global optimum (the ‘true’ configuration), we use it
to move away from the optimal solutions to find a sub-optimal configuration which is 
equivalent to a ‘noisy’ configuration by holding the temperature to some positive value.



Noise-Injection Paradigms
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Adding 0 centered random variates from a 
single distribution.
The process is generally agnostic to the data itself.

But in a diffusion model, the diffusion model
may not be agnostic to the data.



Stationary Distributions
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t = 1 t = 10 t = 100

Distributions of the Configuration Space (𝒞𝒞) of all histograms with k = 3 bins and N = 2 individuals

E.g., if N = 50, k = 5 →  |𝒞𝒞| = 316251  

𝑁𝑁 + 𝑘𝑘 − 1
𝑘𝑘 − 1 = 4

2 = 6For a fixed N and fixed k, the size of the configuration space =



The Main Idea Behind Data Noise Injection Using 
The Metropolis/Simulated Annealing Approach
• ‘Ground truth’ = ‘observed data’ = ‘sampled data’ = ‘optimal data’
• ‘Disclosed data’ = ‘noise injected data’ = ‘suboptimal data’
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Ground truth/optimal histogram:  [1,2,3,20,24]  Total count = 50

[1,4,5,19,21]

[3,5,6,16,24]

[3,4,4,18,21]

t = 10 t = 100

Notice that the total count in all these histograms = 50

[10,8,5,11,16]
[6,7,10,13,14] 
[7,10,11,9,13] 



Candidate Generation Mechanism
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• Negative bin values are impossible.
• Invariants correspond to bins that are ignored.
• Total counts are unchanged.

Histogram



Can the Metropolis/SA Algorithm Create Markov Chains 
that are DP?
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Define the configuration space:

:

:
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Define the following objective functions for neighboring configurations x and y:

Can the Metropolis/SA Algorithm Create Markov Chains 
that are DP?

Each dataset/configuration x and y induces its own Markov Chain:

:



The Boltzmann Machine Mechanism
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:

:



Markov Chain Convergence
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As t → ∞, 𝛜𝛜(t) → 0 As t → 0, 𝛜𝛜(t) → ∞

:

where and 𝛿𝛿 𝑘𝑘 → 0 as 𝑘𝑘 → ∞



Convergence of Two or More Markov Chains
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Convergence of Two or More Markov Chains
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Convergence of Two or More Markov Chains



Stopping Criteria:
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We can define a random variable that converges to 0 based on the ergodic theorem:

How can we apply the foregoing theorems when we are not converging to the ‘true’ data?

Convergence to the expected objective function value.



Experiments: t = 10, 50; Run Length = 5000; Replications = 30
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Histogram: (1, 2, 3, 20, 24)



Conclusion
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• Metropolis/Simulated Annealing Algorithm can serve as a basis for noise injection.

• Boltzmann Machine Mechanism can provide ‘noise-evolution’.

• Constructing candidate generation mechanisms can obviate the need for post-processing. 

• Resulting Markov Chains satisfies (𝜖𝜖(𝑡𝑡),𝛿𝛿(𝑘𝑘)) − DP.

• Flexibility in implementation: data object types and objective functions.

• Possibility of tuning sensitivity by modifying the weight matrices.

• Bears some striking similarities to the Exponential Mechanism.
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