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Overview:

* The need for Disclosure Avoidance and how it’s done

The perspective offered by Statistical Mechanics in the context of privacy

The relevant elements of Statistical Mechanics.
e Simulated Annealing (SA) and Markov Chain Monte Carlo (MCMC) simulations
* Changing perspective: DP noise injection vs. DP noise evolution.

. Uns?‘/vér;g optimization problems as a noise-evolution method (as opposed to a ‘noise-injection’
method).

The Boltzmann Machine Privacy Framework (BMPF)
* Description of consensus functions for histograms

* Generating ‘candidate’ histograms
* How the BMPF satisfies (€(¢), 8(k))-DP

Experimental Results
* MCMC burn-in issues, ways to ameliorate this i.e., stopping criteria.

Conclusion
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Disclosure Avoidance and What it Entails

e Can’t publish actual datasets collected by CB
* Privacy laws prohibit disclosure. E.g., Title 13, Title 26 and others.

* Publishing data with many traditional DA methods can still disclose private
information (e.g., Governor Weld’s medical records were ‘anonymized’)

* But good public policy-making requires some use of the data.
* How can we publish data yet maintain privacy?

* Differential Privacy (2006), formerly referred to as epsilon
indistinguishability provides a methodology that guarantees a
guantifiable level of privacy via a ‘privacy budget’.

* It infuses data with ‘calibrated noise’ to achieve this quantifiable level
of privacy.
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Examples:

e Histograms are a common type of dataset developed at Census

* They reflect counts of entities (people) that are associated with
certain mutually exclusive combinations of attributes

* Publishing actual counts can lead to complete privacy loss

* DP modifies these counts in a probabilistic manner such that there is
a quantifiable level of privacy yet still maintains usability/utility.
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Definition of Differential Privacy

Pr{M(x')} € §} < et Pr{M(x) € S} +

E.g., adding random noise to pixels in a picture to blur the faces of people
in the picture making it hard to identify the people in the picture,
yet enabling a fairly accurate counting of the number of people.

Quantifies the fundamental tradeoff between accuracy and privacy.

Lots of way to create ‘noisy data’: 1. Add random variates to the actual data.

2. Consider the actual data as the ‘optimum data’ in an
optimization problem and produce sub-optimum data.
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Simulated Annealing and Markov Chains

Simulated Annealing (SA) circa 1983 is a meta-heuristic that can ‘solve’ a wide variety of
optimization problems.

Hallmarks:

e Based on the Metropolis Algorithm (an accept/reject method), it enables Markov Chain Monte
Carlo (MCMC) sampling.

—AE/t ; >
The MAC: Let AE = Ecand - Ecurr Pr{Accept Eca.nd} = { ¢ if AL >0

1 otherwise

—— TiDij = TjPyji
1

NP AN [TV
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* SA converges in probability under WLLN to the globally optimal solution:
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Simulated Annealing

* Used to solve a wide variety of optimization problem by virtue of its simplicity,
convergence properties and generalizability.

* Requirements:
1. A well defined configuration space.
2. A well defined objective function.
3. A ‘good’ candidate generation scheme.
4. An appropriate ‘cooling schedule’. (We’'ll just need a fixed temperature.)

MA/SA effectively moves (transitions) from one configuration to another under
the influence of these four elements.

Transition probabilities :> Markov Chain

Instead of using SA to find the global optimum (the ‘true’ configuration), we use it

to move away from the optimal solutions to find a sub-optimal configuration which is
United Statess | €quivalent to a ‘noisy’ configuration by holding the temperature to some positive value.
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Noise-Injection Paradigms

+ O

Adding O centered random variates from a
single distribution.
The process is generally agnostic to the data itself.

But in a diffusion model, the diffusion model
may not be agnostic to the data.
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Stationary Distributions

€ ={(2,0,0),(1,1,0),(1,0,1),(0,2,0),(0,1,1),(0,0,2)}
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Configurations Configurations Configurations

Distributions of the Configuration Space (C) of all histograms with k = 3 bins and N = 2 individuals

: . . . . _ (N+k —1\ _ 4\ _
For a fixed N and fixed k, the size of the configuration space = ( 1 ) = (2) =6

United States® E.g.,iftN=50,k=5- |C| =316251
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The Main Idea Behind Data Noise Injection Using
The Metropolis/Simulated Annealing Approach

* ‘Ground truth’ = ‘observed data’ = ‘sampled data’ = ‘optimal data’
 ‘Disclosed data’ = ‘noise injected data’ = ‘suboptimal data’

Ground truth/optimal histogram: [1,2,3,20,24] Total count = 50

t=10 t=100
1,4,5,19,21 10,8,5,11,16]
3,5,6,16,24 6,7,10,13,14]
3,4,4,18,21] 7,10,11,9,13]
United States® Notice that the total count in all these histograms =50

Census

11



Candidate Generation Mechanism
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Histogram

* Negative bin values are impossible.
* |nvariants correspond to bins that are ignored.
e Total counts are unchanged.

12



Can the Metropolis/SA Algorithm Create Markov Chains
that are DP?

Define the configuration space:
Definition : Define x € N" and corresponds to a histogram vector of n counts.

Definition : Given a vector x € N" and where )" | x; = N, define

Cx = {XEN”:‘V’XeN”,Zf\Lla:@-:N}
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Can the Metropolis/SA Algorithm Create Markov Chains
that are DP?

Define the following objective functions for neighboring configurations x and y:

cx(z) = —(z — x)TWx(z — x) and

Definition : For all neighboring configurations x,y € C, define the global
SenSItivity

S = INa ma C —C
ZEE{XJ:d(X;{’)SQ H X(Z) Y(Z)HQ

ecx(z)/t

- S ecx @]t

Each dataset/configuration x and y induces its own Markov Chain: Wz‘x(t)
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The Boltzmann Machine Mechanism

Definition : Define the Boltzmann Machine Mechanism By ;(x) as the ran-
dom configuration of a discrete time, irreducible and aperiodic Markov chain
generated by application of the Metropolis algorithm at temperature t after k
iterations given a dataset X where X is the initial configuration of the Markov
Chain. This simply corresponds to the k'"-step transition probability of the
Markov Chain. Thus,

Pr{Bj.(x) =z} = Pr{Xi(t) = z|Xo(t) =x} = p;f%

)

Theorem : Let (X(t))r>0 be an irreducible, aperiodic Markov Chain based
on the Metropolis algorithm as in Theorem 4. Then the BMM B, ;(x) satisfies
(e(t),0(k))—DP where (k) — 0 as k — oc.

United States®

Census

e Bureau 15



Markov Chain Convergence

Theorem : Let X;. be an irreducible and aperiodic Markov Chain on a finite
configuration space C with stationary distribution w(t) at fixed temperature t.
Then there exist constants « € (0,1) and C' > 0 such that for all state vectors

v ¥l
max v — ()| < CaF (10)
Pr{B;(x) € S} < eV Pr{B;(y) € S} + (k)
where  €(t) = ? and 6(k) > 0ask » o
Ast— o, €t) — 0 Ast— 0, €t) > ©
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Convergence of Two or More Markov Chains
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Convergence of Two or More Markov Chains

Theorem:
Given p irreducible, aperiodic Markov Chains X,,f[ff
space d(-, -) where

]

.m = 1,2,...,p and a metric

M = d (£(x), £ (xom))

where V m., ﬂa-fr,,[ff] 7% 0 as k — oo and some function

, k k
v — gx M XM XD

such that
VI 50 as k=
and
Y =0 o f(X)) = f(Xo) =... = f(X))
then for any chain m and £ sufficiently high
United States® Pr{ﬂ,{?[?ff} — 0‘}/["&'] =0} > Pr{ﬂj?[?if} = 0}.
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Convergence of Two or More Markov Chains

Corollary: Let p be the number of independent Markov Chains and let Y%7 be
the metric among the p chains as defined above at time index k. Then for any chain
m with p > 2 and k sufficiently large, then

Pr{M* = o|yFr+ll = 0} > Pr{M* = o]y ?) = 01 > Pr{M/ = 0}.
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Stopping Criteria:
How can we apply the foregoing theorems when we are not converging to the ‘true’ data?

We can define a random variable that converges to 0 based on the ergodic theorem:

-1

1< K\ a.s.

o E Cx(X£ ]) o E 7Tz|x(t)cx(z) as n — oo Convergence to the expected objective function value.
k=0 zeC

n—1
lim |~ 3 e (X)) = 3 mpn(tex(z)| = 0
n=0

k— n
oe zcC

n—1
1
MM = - S = 3w (t)ex(z) — 0
n=0

zcC

n—1
1
My = - > ex (X3 — D Ta(t)ex(z) = 0
n=>0

zeC
United States® [k] prob
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Avg. Objective Function value

Awg. Objective Function value

Experiments: ¢=1q 50: fun Length = 5000; Replications = 30

Consensus Function Running Average
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Conclusion

* Metropolis/Simulated Annealing Algorithm can serve as a basis for noise injection.

e Boltzmann Machine Mechanism can provide ‘noise-evolution’.

e Constructing candidate generation mechanisms can obviate the need for post-processing.
* Resulting Markov Chains satisfies (e(t), 6(k)) — DP.

* Flexibility in implementation: data object types and objective functions.

* Possibility of tuning sensitivity by modifying the weight matrices.

* Bears some striking similarities to the Exponential Mechanism.
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