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xD Overview X

xD is an emerging technologies group that’s advancing the delivery of

data-driven services through new and transformative technologies.
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Responsible AI (RAI) Privacy-Enhancing Incubation &
Technologles (PETSs) Transformation

* Al/ML for labeling & classification of
geographic data saving ~800,000
hours of manual labeling

* XAl & Causal learning for bias

UN Pilot for Secure Multi Party
Computation
* Remote execution and Federated

* Developer Experience at Census
* Biasin Infrastructure
« DAO for Equitable Government

identification in geographic data . :_etarn/l\ng Multi Part participation
* Model Card Generator & Al Register (? er gtert1'cy uttiFarty + Privacy Preserving Record Linkage
* Bias Toolkit omputation for Health



When Al Goes Wrong
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Motivation
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XAI Overview
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Task

* T understand why &
why not.

* I can predict when you
will succeed or fail.

* I know when and when
not to trust you.

* I know when and why

You made an error.
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W

hy is XAI Needed?

Explain to Justify

Explainable Al

Explain to Control

Explain to Discover

.
®
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Explain to Improve



Demographics

* Demographic Analysis is the collection and
analysis of broad characteristics about groups of
people & population.

» Statistics that describe populations and their
characteristic.
o) Sensitive Attributes

O Potential for Bias

 The combination of the internet, big data, and
artificial intelligence 1s greatly amplifying the
usefulness and application of demographics as a
tool for marketing and business strategy.

X

Demographics

[de-ma-‘gra-fiks]

The study of

a population-based
on factors such as
age, race, and sex.



Demographic Bias

* Unequal representation or treatment based on
demographic factors.

* Can be detrimental and misleading in crucial
domains, like medical diagnostics and treatment
plans.

 Example :

Machine learning model suggests varied
treatments for two patients solely due to their
demographic details, even when they have the
same medical condition.




XAI for Demographic Models

Explaining/interpreting predictions,
and recommended actions to
stakeholders.

Aims to create more
understandable, interpretable, and
reliable models, by improving the
quality of predictions.

Bias 1dentification & mitigation.

bias_mitigation
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Use Case Examples X

* Example 1 — 36,000 Samples

o Binary Classification.
o 1994 Census database for prediction of individual income of </> 50K.
o Features: Age, Sex, Race, Education, Occupation.

* Example 2 — 500,000 Samples

o Multiclass Classification.
o 2015-2019 ACS data for prediction of individual income categories
m <$25K, $25K-$50K, , $50K-$100K, $100K-$150K, and >$150K
o Features: Age, Sex, Race, Ethnicity, Martial Status, Education,
Occupation, Citizenship, Employment Status, Language, Years in the US,
English.



Example # 1

 Six ML models for income classification.

o Classes: Above or below $50K

Model Accuracy | Precision | Recall | F1-Score
Logistic 0.8108 0.80 0.80 0.80
Regression
Gradient 0.8653 0.86 0.86 0.86
Boosting
Light Gradient | ) o/, 0.87 0.87 0.87
Boosting
CAT Forest 0.8716 0.89 0.89 0.89
Extreme
Gradient 0.8752 0.89 0.89 0.89
Boosting
Random 0.8504 0.98 0.98 0.98
Forest

Cross val Accuracies
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Example # 1

Explainability via feature relevance & beeswarm plot.

» Feature relevance highlights the bias in age, sex.

* Beeswarm highlights the higher values (females) in red are less likely to

earn over S0K in 1964 than males.
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Example # 2

 Five ML models for income classification.

X

o Classes: <$25 K, $25K-$50K, , $50K-$100K, $100K-$150K, and >$150K

Model Accuracy | Precision | Recall | F1-Score
Loglstlc_ 0.6355 0.46 0.64 0.52
Regression
Gradlgnt 07510 0.78 0.78 0.78
Boosting
Light _Gradlent 07514 0.78 0.78 0.78
Boosting
CAT Boosting 0.7556 0.79 0.80 0.79
Forest

Cross val Accuracies
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Example # 2 X
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Example # 2

X

Beeswarm plots highlight potential bias in the spoken language as English speakers are:
* Less likely to earn less than $25K.
* More likely to earn $25K - $50K than other individuals who speak other languages.

* More likely to earn $50K - $100K than other individuals who speak other languages.
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Summary X

« Utilization of Al in demographic applications is increasingly vulnerable to
bias scrutiny.

* The incorporation of XAI as a must-have feature in demographic use of Al
will help alleviate bias.
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Questions/Discussion

Get in touch
atul.rawal@census.gov

xD.gov
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