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Background

 Measurement equity is critical for the accurate assessment 
of disparities in health outcomes

 Estimated disparities in the prevalence of a given health 
outcome can be affected by whether the outcome is 
measured or self-reported

 Objective: To assess potential measurement error inequities 
across sociodemographic characteristics for four common 
health outcomes collected in a national health survey



Research Questions
1. Do self-reporting errors vary across 

sociodemographic subgroups?
• e.g., age, sex, race/ethnicity, education level, 

marital status, insurance coverage type, and 
poverty status

2. Are identified self-reporting errors 
significantly different from zero?



Methodology

 Recursive Partitioning for Modeling Survey Data (RPMS)
• We used conditional linear regression trees (CLRT) via the rpms 

R package (Toth, 2022) to identify subgroups with larger 
differences between measured and self-reported health 
outcomes

 Model specification
• Clustering by respondent
• Permutations: 25,000
• P-value: 0.0001

https://cran.r-project.org/web/packages/rpms/rpms.pdf


Methodology

 rpms Package Highlights:
• Recursively partitions the dataset, fitting a specified least squares 

linear model on each node separately
• Algorithm has an unbiased variable selection and accounts for 

complex sample design
• Returns a tree that can be used for identifying key group 

differences in terms of means, but also intercepts and slopes
– The intercept represents the measured prevalence 
– The slope represents the measurement error



Methodology

 Data:
• National Health and Nutrition Examination Survey (NHANES) 

2015-2016 through 2017-March 2020
– ~5,000 persons per year
– Household interviews and in-person health examinations
– Includes both self-reported data (interview component) and measured 

data (examination component)
• Did not include weights or survey design information

– Objective was to quantify potential measurement error inequities in a 
sample, not to infer error magnitude for the target population



Methodology

  Sociodemographic Predictors:
• Age group (18-34, 35-49, 50-64, 65 and over)
• Sex (male or female)
• Race/ethnicity (Hispanic, non-Hispanic Black, non-Hispanic White, non-Hispanic Other 

or Multiple Race)
• Education (high school or less, greater than high school, missing/unknown)
• Marital status (married or cohabitating; never married, widowed, divorced, or 

separated; missing)
• Insurance status (public insurance, private insurance, uninsured, missing/unknown)
• Ratio of income to poverty threshold (above poverty, below poverty, missing/unknown)



Methodology

 Health Outcomes (Measured* and Self-Reported):
1. Diabetes
2. Hypertension
3. High cholesterol
4. Current smoking

* Measured health outcomes include self-reported prescription medication use, 
where respondents are requested to show the medication label to the interviewer



Methodology

1. Diabetes:
– Measured: hemoglobin A1c (HbA1c) ≥6.5% or reported use of 

prescription medication for diabetes
– Self-report: “have you ever been told by a doctor or health 

professional that you have diabetes or sugar diabetes?”



Methodology

2. Hypertension:
– Measured: average blood pressure across up to three measurements 

≥140 mmHg (systolic), ≥90 mmHg (diastolic), or reported use of 
prescription medication for hypertension

– Self-report: “have you ever been told by a doctor or other health 
professional that you had hypertension, also called high blood 
pressure?”



Methodology

3. High cholesterol
– Measured: total cholesterol of ≥240 mg/dL or reported use of 

cholesterol-lowering prescription medication
– Self-report: “have you ever been told by a doctor or other health 

professional that your blood cholesterol level was high?”



Methodology

4. Current smoking
– Measured: serum cotinine ≥11 ng/mL
– Self-report: “have you ever smoked at least 100 cigarettes in your 

entire life?” and a response of “every day” to “do you now smoke 
cigarettes?”



Methodology

 Sample Data Setup for RPMS*:

*Recursive Partitioning for Modeling Survey Data (Toth, 2022)
Data includes additional predictors (not shown above): sex, race/ethnicity, education level, marital status, 
insurance coverage type, and poverty status

Respondent ID Age, years Measure Type Diabetes
1 22 0 (Measured) 1 (Yes)
1 22 1 (Self-reported) 1 (Yes)
2 64 0 (Measured) 1 (Yes)
2 64 1 (Self-reported) 0 (No)



Results

 The CLRT models estimate differences in measured prevalence (𝛽𝛽0) 
and measurement error (𝛽𝛽1)

 𝛽𝛽1 is the number of percentage points, on average, that a subgroup 
tends to over– or under–report the specified health outcome 
relative to the measured value
• e.g., 𝛽𝛽1 = -1.0 indicates average under self-reporting by 1 percentage point 

for the given subgroup

 End nodes with significant measurement error were identified 
• 𝛽𝛽1 ≠ 0 at p < 0.001



Results
Diabetes Hypertension High Cholesterol Current Smoking

Measurement error 
direction

Underreport only Underreport & 
overreport

Overreport only Underreport only

Range in magnitude 
(%)

-0.4 to -6.4
Range: ~6%

-9.5 to 4.3 
Range: ~14%

0.6 to 8.0 
Range: ~7%

1.3 to 25.3 
Range: ~24%

Number of significant 
end nodes

1 4 5 17

Modification variables Age
Sex
Race/ethnicity

Insurance

Age
Sex
Race/ethnicity
Education 

Insurance

Age
Sex

Education 

Insurance
Poverty

Age
Sex
Race/ethnicity
Education 
Marital status 
Insurance
Poverty



Results

 Diabetes:
• Initial splits: age, race/ethnicity
• Consistent underreporting across all subgroups
• Significant underreporting by 6.4% for respondents ages 50-64 years 

who were Hispanic, non-Hispanic Black, or non-Hispanic other, and did 
not have public health insurance (node 25)



Results

Figure 1. Diabetes Tree Model

* indicates β1 significantly different from 0, p < 0.001
β0 and β1 are shown as proportions



Results

Figure 1. Diabetes Tree Model



Results

Figure 1. Diabetes Tree Model



Results

Figure 1. Diabetes Tree Model



Results

 Hypertension:
• Initial splits: age, race/ethnicity
• Younger respondents had lower prevalence and tended to overreport, 

while older respondents had higher prevalence and tended to underreport 
• Significant underreporting for respondents ages 65+ who were Hispanic, 

non-Hispanic White, or non-Hispanic other:
– Males 8.8% (node 31); Females: 7.1% (node 30)

• Significant overreporting for respondents ages 18-34 who were Hispanic, 
non-Hispanic White or non-Hispanic other:
– Males: 3.9% (node 19); Females with non-missing education status: 4.3% (node 37)



Results

Figure 2. Hypertension Tree Model

* indicates β1 significantly different from 0, p < 0.001                   
β0 and β1 are shown as proportions



Results

Figure 2. Hypertension Tree Model



Results



Results

 High Cholesterol:
• Initial split: age 
• Consistent overreporting across all subgroups
• Significant overreporting for respondents: 

– Ages 18-34 with greater than a high school education by 5.4% for females (node 
18) and 4.0% for males (node 19) 

– Ages 35-49 by 7.6% for females (node 10) and 8.0% for males (node 11)
– Ages 50-64 with health insurance or an unknown status by 6.8% (node 12)



Results

Figure 3. High Cholesterol Tree Model

* indicates β1 significantly different from 0, p < 0.001
β0 and β1 are shown as proportions



Results

Figure 3. High Cholesterol Tree Model



Results

Figure 3. High Cholesterol Tree Model



Results

 Current Smoking:
• Initially split based on health insurance type, but all variables were modifiers
• Consistent underreporting across all subgroups, and significant 

underreporting for 17 out of 30 end nodes:
– Among almost all respondents with private or other/unknown health insurance

– Among almost all subgroups under 65 years with public health insurance or 
who were uninsured, and either non-Hispanic Black or non-Hispanic White

• Percent difference between self-reported vs. measured smoking status 
indicates underestimation by a relative 15% to 72%



Results

Figure 4a. Current Smoking Tree Model: Public insurance or uninsured, 
Hispanic or non-Hispanic Other race



Results



Results

Figure 4b. Current Smoking Tree Model: Public health insurance or 
uninsured, non-Hispanic Black or non-Hispanic White



Results



Results

Figure 4c. Private health insurance or other/unknown health insurance 



Results



Discussion

 The magnitude and direction of measurement error varied by 
health outcome and subgroup
• Smaller and simpler trees for diabetes & high cholesterol (less variation)
• Larger and more complex trees for hypertension & smoking (more 

variation) 
 Measurement error varied by age, sex, race/ethnicity, education 

level, and health insurance type for most health outcomes 
• Marital status and poverty level were less important

 Regression trees can highlight where we are more likely to under- or 
over-estimate prevalence when relying on self-reported data



Discussion

 Underreporting of smoking suggests a narrow interpretation 
of the self-report definition, missing some cases of current 
tobacco or nicotine use

 Questions that include alternative tobacco/nicotine products 
could better capture usage, especially for younger populations
• e.g., NHANES includes additional questions that ask about ever use 

of cigars, e-cigarettes, and smokeless tobacco
 Sole use of exclusive definitions may result in systematic 

misreporting across groups



Conclusion

 Quantifying the degree of measurement error inequity and 
identifying strategies to reduce it is critical for the accurate 
assessment of subgroup disparities in health outcomes

 Our analytic approach offers detailed picture of how 
multiple factors may interact and how measurement error 
differs across intersectional social, demographic, economic, 
and health-related dimensions
• Necessary first step in remediating health inequities
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For more information, contact CDC
1-800-CDC-INFO (232-4636)
TTY:  1-888-232-6348    www.cdc.gov

The findings and conclusions in this presentation are those of the authors and do not necessarily 
represent the official position of the Centers for Disease Control and Prevention.
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