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Replicate data x* given (|) observed data, x (Hu, 2019)
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Data Synthesizer
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Differential Privacy under M = £(0 | X) (Dimitrakakis et al., 2017)

sup sup <ef

x,x €exn:6(x,x")=1 B€Bo {(B | X/)

i

P ¢ bounds the change in the probability measure &
> from the inclusion of a single record J(x,x ) = 1,

» over all possible outcomes, B € Sg — sets in the space of
measurable sets of ©.

» over all possible data sets x, x € X" of size n.
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Five microdata synthesizers
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Synthesizer #1: Weighted pseudo posterior (Savitsky et al., 2022)

» The mechanism M is the pseudo posterior:

n

&0 | @) oc [ plai | 0)™ x £(0) (1)

i=1
> Fit any Bayesian synthesizer to confidential data

P> Formulate privacy weight «; and estimate a pseudo posterior

- Downweight each likelihood by «; € [0,1]
- Higher disclosure risk, lower o

» Calculate Lipschitz where fy(x) is the log-likelihood:

Supx,x/6X”:6(x,x/)zlsup9€@|O‘(X)f9(x) - a(xl>f9(x )| <A,

max_ supgeplai X fo(zi)| < Aax
i€l,...,n

» Each posterior draw with €, = 2A, x produces one synthetic z*
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Synthesizer #2: Weighted-e pseudo posterior (Savitsky et al., 2022)

P In addition to the observation-indexed privacy weight «; in
Weighted

» Savitsky et al. (2022) introduce a truncation of each weight: If a
record’s log-likelihood contribution > €/2, set final weight o =0

» Truncation induces a rapid contraction of €, to global €

> As with the Weighted, Weighted-e also achieves aDP
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Asymptotic Differential Privacy

Unweighted Weighted Weighted-M

154

-
o
f

Max Lipschitz

T T T T T T T T T T T T
100 400 16006400 100 400 16006400 100 400 16006400
N
— U.S. BUREAU C  _ __ . e -




Weighted-e Produces Slightly Worse Utility
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Figure: Distributions of the average of mean parameter p for each of sample
size (100,400, 1600, 6400) from R = 100 realizations.
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Synthesizers #3 & #4: Censored (likelihood)

» Censor the log-likelihood at a target threshold, €/2

exp(e/2),  p(xi| 0)* > exp(e/2),
pX(x; | 0) =< exp(—€/2), p(z;|0)™ < exp(—e€/2),
p(z; | 0)*, otherwise,

for use in
n
(0] x) o [ [ p&(ai | 0)€(0),
i=1
» Embeds weights inside the censoring mechanism; labeled as
Censor_w and it achieves DP (Hu et al., 2022)

» Censored unweighted (posterior) the censoring mechanism; labeled
as Censor_uw and it achieves DP

» Censoring offers a practical, low-dimensional alternative to

_ Jlrunceting the-parameter space to achieve DP -gi_s



Synthesizer #5: Perturbed histogram (Wasserman and Zhou, 2010)

» Under the assumption of a bounded and continuous univariate
variable

1. Discretize it into a histogram with a selected number of bins
2. Adding Laplace noise to the histogram to achieve DP
3. Simulate microdata from the private histogram under DP

» Labeled as PH and it achieves DP if bounded data
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Simulation study and SDR application
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Simulation design

» Monte Carlo simulation under repeated sampling

» Forr=1,---, R =100, simulate a local database x, of size
n = 2000 from Beta(0.5, 3)

» For each local database x,., we fit and create a synthetic dataset for
each of the synthesizers
1. Weighted: asymptotic DP (aDP)
2. Weighted-e: aDP with faster convergence
3. Censor_w: DP
4. Censor_uw: DP
5. Perturbed histogram: DP if bounded data

» We experiment with ¢ € {5, 4,3}
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Simulation: privacy comparison results

» Violin plots of Lipschitz bounds over R = 100 replicates
» A dashed horizontal line at €/2 is included in each panel
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Simulation: global utility comparison results

> Violin plots of ECDF utility - maximum record-level difference over
R =100 replicates

» Smaller the ECDF, higher the utility
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Simulation: analysis-specific utility comparison results

» Violin plots of median over R = 100 replicates at e =5

» A dashed horizontal line at the analytical median from Beta(0.5, 3)
is included
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Fine tuning with downscaling - &; = ¢; X o, 1 < 1

> Violin plots of Lipschitz bounds over R = 100 replicates without
downscaling (top) and with downscaling (bottom) at € = 4

» A dashed horizontal line at €/2 is included

e = 4 (downscale)
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Improved utility with downscaling

» Violin plots of ECDF utility - average record-level squared difference
over R = 100 replicates without downscaling (top) and with
downscaling (bottom) at e = 4
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Application
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Application

» Survey of Doctoral Recipients public use file from 2017

> n = 1601 respondents who have positions at a 4-year college or
university in the field of mathematics and statistics

P> Variables: salary, gender, age, and the number of working weeks

» Synthesizer: a beta regression after transformation of salary

> We fit and create a synthetic dataset for each of the synthesizers
1. Weighted: asymptotic DP (aDP)

Weighted-e: aDP with faster convergence

Censor_w: DP

Censor_uw: DP

Perturbed histogram: DP if bounded data

SARE IR BN

> Target ¢ =5
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SDR application: utility and privacy results

Data | Weighted Weighted-e Censor.w  Censor_uw PH
Lipschitz NA 2.62 2.61 2.50 2.50 NA
Privacy € NA 5.24 5.22 5.00 5.00 5.00
max-ECDF NA 0.0656 0.1020 0.0968 0.1350 0.1310
avg-ECDF NA 0.0011 0.0025 0.0026 0.0039  0.0057
Mean 91019 92994 89525 88581 88840 93654
Median 80000 80135 76451 75642 75211 91180
15th Q 51000 44303 40574 41142 38107 30108
90th Q 150000 162351 158037 158426 162686 163872

In the utility rows, the best performing synthesizer is in bold and the
second best is underlined
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Concluding remarks
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Summary

P> We propose a stronger, non-asymptotic DP mechanism through the
censoring of log-likelihood

> |t offers a practical, low-dimensional alternative to truncating the
parameter space to achieve DP

» Weighted and Censor_w are recommended given their efficient
balance of utility-risk trade-off

» Weighted demonstrates superior utility preservation at the cost of an
aDP guarantee

» Censor_w provides a stronger, non-asymptotic DP guarantee at the
price of slightly reduced utility performance
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