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Replicate data x∗ given (|) observed data, x (Hu, 2019)

1e+01

1e+03

1e+05

Data Synthesizer

D
is

tr
ib

ut
io

n 
(lo

g)



4/ 25

Differential Privacy under M = ξ(θ | x) (Dimitrakakis et al., 2017)

sup
x,x′∈Xn:δ(x,x′ )=1

sup
B∈βΘ

ξ(B | x)
ξ(B | x′)

≤ eϵ,

▶ ϵ bounds the change in the probability measure ξ
▶ from the inclusion of a single record δ(x,x

′
) = 1,

▶ over all possible outcomes, B ∈ βΘ – sets in the space of
measurable sets of Θ.

▶ over all possible data sets x,x
′ ∈ Xn of size n.
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Synthesizer #1: Weighted pseudo posterior (Savitsky et al., 2022)

▶ The mechanism M is the pseudo posterior:

ξα(y)(θ | x) ∝
n∏

i=1

p(xi | θ)αi × ξ(θ) (1)

▶ Fit any Bayesian synthesizer to confidential data x
▶ Formulate privacy weight αi and estimate a pseudo posterior

- Downweight each likelihood by αi ∈ [0, 1]
- Higher disclosure risk, lower αi

▶ Calculate Lipschitz where fθ(x) is the log-likelihood:

supx,x′∈Xn:δ(x,x′ )=1supθ∈Θ|α(x)fθ(x)− α(x
′
)fθ(x

′
)| ≤ ∆α

max
i∈1,...,n

supθ∈Θ|αi × fθ(xi)| ≤ ∆α,x

▶ Each posterior draw with ϵx = 2∆α,x produces one synthetic x∗
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Synthesizer #2: Weighted-e pseudo posterior (Savitsky et al., 2022)

▶ In addition to the observation-indexed privacy weight αi in
Weighted

▶ Savitsky et al. (2022) introduce a truncation of each weight: If a
record’s log-likelihood contribution > ϵ/2, set final weight α∗

i = 0

▶ Truncation induces a rapid contraction of ϵx to global ϵ

▶ As with the Weighted, Weighted-e also achieves aDP
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Asymptotic Differential Privacy
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Weighted-e Produces Slightly Worse Utility
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Figure: Distributions of the average of mean parameter µ for each of sample
size (100, 400, 1600, 6400) from R = 100 realizations.
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Synthesizers #3 & #4: Censored (likelihood)

▶ Censor the log-likelihood at a target threshold, ϵ/2

pαc (xi | θ) =


exp(ϵ/2), p(xi | θ)α > exp(ϵ/2),
exp(−ϵ/2), p(xi | θ)α < exp(−ϵ/2),
p(xi | θ)α, otherwise,

for use in

ξαc (θ | x) ∝
n∏

i=1

pαc (xi | θ)ξ(θ),

▶ Embeds weights inside the censoring mechanism; labeled as
Censor w and it achieves DP (Hu et al., 2022)

▶ Censored unweighted (posterior) the censoring mechanism; labeled
as Censor uw and it achieves DP

▶ Censoring offers a practical, low-dimensional alternative to
truncating the parameter space to achieve DP
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Synthesizer #5: Perturbed histogram (Wasserman and Zhou, 2010)

▶ Under the assumption of a bounded and continuous univariate
variable

1. Discretize it into a histogram with a selected number of bins
2. Adding Laplace noise to the histogram to achieve DP
3. Simulate microdata from the private histogram under DP

▶ Labeled as PH and it achieves DP if bounded data
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Simulation design

▶ Monte Carlo simulation under repeated sampling

▶ For r = 1, · · · , R = 100, simulate a local database xr of size
n = 2000 from Beta(0.5, 3)

▶ For each local database xr, we fit and create a synthetic dataset for
each of the synthesizers

1. Weighted: asymptotic DP (aDP)
2. Weighted-e: aDP with faster convergence
3. Censor w: DP
4. Censor uw: DP
5. Perturbed histogram: DP if bounded data

▶ We experiment with ϵ ∈ {5, 4, 3}
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Simulation: privacy comparison results

▶ Violin plots of Lipschitz bounds over R = 100 replicates

▶ A dashed horizontal line at ϵ/2 is included in each panel
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Simulation: global utility comparison results

▶ Violin plots of ECDF utility - maximum record-level difference over
R = 100 replicates

▶ Smaller the ECDF, higher the utility
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Simulation: analysis-specific utility comparison results

▶ Violin plots of median over R = 100 replicates at ϵ = 5

▶ A dashed horizontal line at the analytical median from Beta(0.5, 3)
is included
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Fine tuning with downscaling - α̃i = c1 × αi, c1 < 1

▶ Violin plots of Lipschitz bounds over R = 100 replicates without
downscaling (top) and with downscaling (bottom) at ϵ = 4

▶ A dashed horizontal line at ϵ/2 is included
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Improved utility with downscaling

▶ Violin plots of ECDF utility - average record-level squared difference
over R = 100 replicates without downscaling (top) and with
downscaling (bottom) at ϵ = 4
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Application

▶ Survey of Doctoral Recipients public use file from 2017

▶ n = 1601 respondents who have positions at a 4-year college or
university in the field of mathematics and statistics

▶ Variables: salary, gender, age, and the number of working weeks

▶ Synthesizer: a beta regression after transformation of salary

▶ We fit and create a synthetic dataset for each of the synthesizers

1. Weighted: asymptotic DP (aDP)
2. Weighted-e: aDP with faster convergence
3. Censor w: DP
4. Censor uw: DP
5. Perturbed histogram: DP if bounded data

▶ Target ϵ = 5
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SDR application: utility and privacy results

Data Weighted Weighted-e Censor w Censor uw PH
Lipschitz NA 2.62 2.61 2.50 2.50 NA
Privacy ϵ NA 5.24 5.22 5.00 5.00 5.00
max-ECDF NA 0.0656 0.1020 0.0968 0.1350 0.1310
avg-ECDF NA 0.0011 0.0025 0.0026 0.0039 0.0057
Mean 91019 92994 89525 88581 88840 93654
Median 80000 80135 76451 75642 75211 91180
15th Q 51000 44303 40574 41142 38107 30108
90th Q 150000 162351 158037 158426 162686 163872

In the utility rows, the best performing synthesizer is in bold and the
second best is underlined
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Summary

▶ We propose a stronger, non-asymptotic DP mechanism through the
censoring of log-likelihood

▶ It offers a practical, low-dimensional alternative to truncating the
parameter space to achieve DP

▶ Weighted and Censor w are recommended given their efficient
balance of utility-risk trade-off
▶ Weighted demonstrates superior utility preservation at the cost of an

aDP guarantee
▶ Censor w provides a stronger, non-asymptotic DP guarantee at the

price of slightly reduced utility performance
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