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Survey Coding

o Assign numerical codes to free form text responses
• Standardized categories  statistical analysis

o Traditionally, trained coders learn the classification 
system and assign text
• Require substantial training
• Time consuming and labor intensive

o Autocoding: computer program automatically 
assigns codes
• Early autocoders used fixed dictionaries
• ML/NLP models are now more common
• Often, both human coders and models are used
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BLS SOII Autocoders
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https://www.bls.gov/iif/automated-coding.htm

o SOII autocoders automatically assign ~85% of all 
codes with expected error rate ≥ manual coding 

o BLS receives requests from external parties to use  
the SOII autocoders. 
• However, BLS is unable to fulfill requests due to 

concerns of disclosure risk

o ML models can leak information about their training 
data if attacker has access to deployed model 
• Membership leaks increase as # classes increase 

(Shokri et al., 2017; Truex et al., 2021)
• Models with more parameters tend to be more 

susceptible to high accuracy attacks (Nasr et al., 2019)

o Concerning for SOII autocoders since they:
• Have large # of classes (e.g., >850 occupation codes)
• Use deep learning models (i.e., DistilRoBERTa)
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Privatizing Models with 
the Posterior Mechanism
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o Ensures that an algorithm applied to 
two databases differing by one 
record will result in similar output
• Promises that the chance of an 

outcome is about the same whether or 
not you contribute your data

o For supervised ML, the “two 
databases” are training sets that 
differ by one training example

o Allows for rigorous quantification of 
privacy

Differential Privacy (DP)
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Random Additive Noise vs. Random Selection
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o Many popular DP mechanisms add random 
noise

o Unfortunately, additive noise mechanisms 
tend to suffer from a few drawbacks:
• They can produce values that are not plausible 

(negative counts of people)
• Challenging to calculate the sensitivity bound for a 

complex operation– instead add noise to each 
intermediate step

o Random selection mechanisms can 
sometimes be a good alternative



Exponential Mechanism
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Mon Tues Weds Thurs Fri

“Management wants to know what day of the week is 
most popular for staff to come into the office.”

• We take a poll of the office and ask each person what 
day of the week they most consistently come in

• Wednesday is the most common answer
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Exponential Mechanism

8 CONFIDENTIAL

Mon Tues Weds Thurs Fri

11%

27%

14%

41%

7%

• Maybe we use the survey response distribution 
• Now Weds is selected more often than others (~41%)
• However, utility is still not great and it’s not differentially private (yet)
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Exponential Mechanism
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Mon Tues Weds Thurs Fri

99%

<1%

• The exponential mechanism selects an output with probability 
proportional to the exponent of a scoring function  

• If we use the response distribution from last slide as a scoring 
function, we’re in business

• Now Weds is almost always selected (~99%)

exp(
𝜀𝜀 ∗ 𝑢𝑢(𝑥𝑥, 𝑟𝑟)

2∆
)

<1%<1%<1%

𝜀𝜀 = 1 
∆ = 1
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Privatizing Machine Learning with Random Selection
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• Now we want to share a machine learning 
autocoder

• Instead of a mode, we’re sharing fitted model 
parameters

• Using the previous logic, if we had different 
models all trained on the private data, maybe 
we could randomly select one of them to 
release.

• However, this leaves some questions:
• What models should be considered?
• How should we select which model to release?
• What privacy protection, if any, does this 

provide?

Icon created by Lucas Rathgeb
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Posterior Mechanism
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o Bayes to the rescue!

o What models should be considered?
• The posterior distribution characterizes all combinations of 

parameters, given fixed training data, model specification, and 
hyperparameters

o How should we select which model to release?
• A draw from the posterior distribution will release one trained model
• Parameter sets closer to the best fit (i.e., mode of the posterior 

distribution or MAP) are more likely to be selected

o What privacy protection does this provide?
• The posterior mechanism is a version of the exponential mechanism 

(Wang et al., 2015; Dimitrakakis et al., 2017)
• Scoring function is the posterior 𝑃𝑃 𝜃𝜃 𝐷𝐷
• 𝜺𝜺-DP (exact inference); (𝜺𝜺,𝜹𝜹)-DP (approximate inference)

MAP release
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SWAG Pseudo 
Posterior Mechanism

12



Posterior Mechanism with Deep Learning?
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o Unfortunately, applying the posterior mechanism to modern autocoders (using deep learning) 
poses some challenges

o The sensitivity can be unbounded
• The likelihood / loss values for these models can be arbitrarily large
• This makes it hard to define the sensitivity (max 𝜃𝜃 can change when an obs is added or removed)
• We address this with the Pseudo Posterior Mechanism

o Bayesian deep learning is both computationally and inferentially challenging
• Deep learning models have millions to billions of parameters and non-convex loss landscapes.
• Exact Bayesian inference (computing the “true” posterior distribution) isn’t possible with deep learning 

models
• Most popular approximate Bayesian inference methods (MCMC, Metropolis-Hastings, HMC) aren’t 

feasible with deep learning 
• We address this with Gaussian Stochastic Weight Averaging (SWAG)

o We combine these two ideas to propose the SWAG Pseudo Posterior Mechanism
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Pseudo Posterior Mechanism
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o The pseudo posterior mechanism (Savitisky et al., 
2022) extends the posterior mechanism with a 
weighted likelihood function and risk-based case 
weights

o This offers two main benefits:
• It bounds the loss values, ensuring a finite sensitivity
• It downweights riskier records, improving utility

o The case weights (red) are generated by finding the 
max loss values across posterior draws for each record
• Records with higher max loss values are “riskier”, since they 

diverge more from the model predictions and are therefore 
easier to identify



Gaussian Stochastic Weight Averaging (SWAG)
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o SWAG (Maddox et al., 2019) is an approximate Bayesian 
inference method for deep learning
• Builds off work by (Mandt et al., 2017) showing that stochastic 

gradient descent (SGD) with a constant learning rate can capture 
the shape of the posterior

o SWAG extends this for deep learning by proposing a three-
step approach:
• Initially fine-tune model with a small learning rate until you get to 

a local minima
• Continue training with a larger constant learning rate to explore 

the space around the local minima
• Use the iterations from the higher LR to estimate a multivariate 

Gaussian as approximate posterior distribution
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Fine-tune
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Step 1:
Start with pre-trained model parameters.

Step 2:
Fine-tune with SGD 

for new task.

Step 3:
Continue with high constant

learning rate to estimate SWAG.

Step 4:
Take draws from SWAG.

𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛 =  �
𝑖𝑖=1

𝑁𝑁

𝛼𝛼𝑖𝑖 ∗ 𝑙𝑙(𝑦𝑦𝑖𝑖 ,𝜃𝜃𝑖𝑖)

Step 5:
Return to Step 2 parameters.

Step 6:
Estimate final SWAG.

Fine-tune using risk-based weights.

Take single draw to create 
final private model.

Use to estimate risk-based weights.

SWAG Posterior

𝜃𝜃|𝑦𝑦 ~ Ν( �𝜃𝜃, 1
2

(Σ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +  Σ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙))

Σ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =
1

𝐾𝐾 − 1�(𝜃𝜃𝑘𝑘 − 𝜃̅𝜃𝑘𝑘) (𝜃𝜃𝑘𝑘 − 𝜃̅𝜃𝑘𝑘)𝑇𝑇

∆𝛼𝛼𝑖𝑖  = 𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃  𝛼𝛼𝑖𝑖 ∗ 𝑙𝑙(𝑦𝑦𝑖𝑖 ,𝜃𝜃)
∆𝛼𝛼  = 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 ∆𝛼𝛼𝑖𝑖

𝜀𝜀 = 2∆𝛼𝛼

𝑎𝑎𝑖𝑖 ∝
1

𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃 𝑙𝑙 𝑦𝑦𝑖𝑖 𝜃𝜃)

SWAG Pseudo Posterior Mechanism
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Results
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Data
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o OSHA’s Severe Injury Reports
• Jan 2015 – Sept 2023
• Similar structure and same outcomes as BLS SOII

o Input:
• Final Narrative
• “A truck driver fell approximately 4 feet while descending 

a tanker trailer ladder.”

o Outcome:
• Nature of Injury (OIICS code)
• “Traumatic injuries and disorders, unspecified” (10)

o Summary Stats:
• N = 10,692
• Classes = 153
• 50/50 Training / Test split
• Outcome distribution highly skewed

https://www.osha.gov/severe-injury-reports
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Model Benchmarks
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o Non-Private
• Provides no privacy guarantees but will give us an upper bound on utility

o SWAG Pseudo Posterior
• Uses same hyperparameters as non-private during fine tuning, but higher constant learning 

rate during SWAG estimation

o DP-SGD (Abadi et al., 2016)
• Most popular and well studied differentially private mechanism for machine learning
• Additive noise model (adds noise to batch gradients)
• Use recommended hyperparameters for private fine-tuning of transformer models (Li et al., 

2022; Yu et al., 2022)
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Findings
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o For non-private model, weighted F1 is higher than 
macro F1
• Macro F1 weights each class equally
• Weighted F1 weights more populace classes more
• Performs better on classes with more obs

o SWAG has same weighted F1 as non-private, but 
lower macro F1
• Though there is a drop in model performance, it’s modest
• The privacy protection is also good (𝜀𝜀 = 4)
• However, delta is unknown – asymptotically, approaches 

0 but additional analyses needed for finite samples

o DP-SGD performance is far worse for the same 
approximate level of privacy
• Difference more pronounced with our skewed outcome 

distribution and sample size
• Performance gap should shrink as the training size grows 



Why is SWAG Pseudo Posterior utility so high?
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o We believe it’s an interaction of the case weights and skewed 
outcome distribution
• The method downweights obs with high loss (i.e., those poorly 

predicted by the model)
• Normally, heavier downweighing reduces utility since it forces the 

model to “gives up” on trying to learn certain types of obs 
• However, obs with high loss are more highly concentrated in the 

numerous rare classes (49% classes ≤ 10 obs in training)

o Top vs. Bottom Class Size Quartiles
• We aggregated the 25% largest and 25% smallest classes together 

and compared performance between non-private and SWAG models
• Top quartile is roughly the same.  This is because observations in 

these popular classes are barely downweighed.
• Bottom quartile is lower for SWAG than non-private.  We now 

see the impact of heavier downweighing.  However, since the non-
private performance was already poor, the difference isn’t huge.



Take-aways
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o Trained ML models can leak information about their training data, with 
disclosure risk implications for survey operations

o DP random additive noise mechanisms (e.g., DP-SGD) can work, but 
may struggle with smaller training sets and/or highly skewed outcome 
class distributions

o DP random selection mechanisms (e.g., SWAG Pseudo Posterior 
Mechanism) may provide better utility / privacy trade-offs under these 
conditions
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