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PUBLIC-USE DATA: USEFULNESS AND CHALLENGES

Public-use data files are extremely valuable

Disclosure risks may exist in the public 
release of record-level survey data
e.g., potential linkage to administrative database (vaccine, etc.)
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PROJECT OBJECTIVES

» Systematic methods to:

» EVALUATE DISCLOSURE RISKS

» IMPLEMENT MITIGATION SOLUTIONS

» EVALUATE UTILITY AND RISK REDUCTION
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NYC COMMUNITY HEALTH SURVEY (CHS) OVERVIEW

Annual cross-sectional 
health surveillance survey 

of ≈ 10,000 NYC adults

Monitors progress towards 
citywide health initiatives 

and other core 
surveillance efforts

Collects information 
including health status, 

mental health, healthcare 
access, chronic diseases, 

health and risk behaviors, 
and social determinants of 

health    
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DISCLOSURE RISK ASSESSMENT
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• Assume intruder knows a combination of identifying variables of 
each record

• Evaluate disclosure risk of all confidential survey records
o Core variables – demographic variables
o Key variables – demographic and health-related variables that are easily 

knowable 

• Identify “high-risk” survey records using identifying categorical 
variables and sampling weights
o Weighted populations (Weighted N) and 95% Confidence Intervals (CIs) 

APPROACH OVERVIEW
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IDENTIFYING HIGH-RISK RECORDS
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» Age Group  x  Sex  x Race/ethnicity  x 
Borough  x  Key Variable A

» 25 key variables identified elevated risk 
of re-identification

Core + Key variable 
(one key at a time)

» Weighted N method - i.e., the estimated 
population of these records in this combination 
are less than 100 in NYC

» 4%-24% (of all observations) with elevated risk 
of re-identification

Weighted N less than 
100 in the lower 

bound of 95% CIs are 
flagged as high-risk
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MITIGATION SOLUTIONS & RESULTS
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Nonparametric, based on a 
machine learning algorithm 

Regression trees

Easy implementation, 
Application to categorical and 

continuous variables

R Package: CART

DATA SYNTHENSIS IN RECENT LITERATURE
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Dirichlet Process Mixture of 
Multinomial Distributions Model 

Hu et al. (2014), Drechsler & Hu (2021)

Classification and Regression Trees 
Reiter (2005), Drechsler & Hu (2021)

Bayesian nonparametric 
procedure

Multinomial distribution; 
Latent class model

Easy implementation, 
Synthesis order doesn’t matter 

R Package: NPBayesImputeCat



» Applied to key 
variables for a subset 
of high-risk records

» Method: synthesize 
new value using 
classification and 
regression models

MITIGATION SOLUTIONS

Suppression Partial Synthesis – 
DPMPM

Partial Synthesis – 
CART 

» Applied to key 
variables for a subset 
of high-risk records

» Method: synthesize 
new value using 
nonparametric 
Bayesian models

» Applied to key 
variables for a subset 
of high-risk records

» Method: set values to 
missing 

» Introduces additional 
missing values in 
dataset, and thus not 
considered
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OVERVIEW OF OUR APPROACH
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MITIGATION SOLUTION

Partial data synthesis 
with DPMPM                     
– a Bayesian                      

latent class model 

SUBSET                                        
OF HIGH-RISK RECORDS

Determine a threshold 
(e.g., 5% of all records)

A randomized process

EVALUATE DATA UTILITY

95% CI Overlap and MSE 
of prevalence estimates 

of selected health 
measures

CONFIDENTIAL 
DATA

SYNTHETIC 
DATA

PROTECTED 
PUBLIC-USE 

DATA



RISK RESULTS AFTER DPMPM SYNTHESIS
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Note: among 25 key variables selected in the 2021 CHS 

Synthesis-
at-most-5% 

method

After Synthesis
At most 21% of the dataset 

remains classified as high-risk 
(i.e., at least 79% protection)

Before Synthesis
4% to 24% high-risk 

observations of all observations

4% -
24%

21%
(At most)



DATA UTILITY RESULTS AFTER DPMPM SYNTHESIS

94% 
overlap in the 95% confidence 
intervals of important health 

measures, on average

Best in balancing risk reduction 
and utility preservation
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Thresholds: 5%, 10%, 20% SYNTHESIS 

Cutoffs: 50%, 75%, 90% 

95% 
CONFIDENCE 

INTERVAL 
OVERLAP

10 commonly reported HEALTH 
MEASURES

With synthesis-at-most 5%



RESULTS COMPARISON: DPMPM VS CART
» Disclosure risk (y-axis)

» % of high-risk after mitigation
» Smaller means lower risk

» Utility (x-axis)
» 95% CIO of health outcomes 

before and after mitigation
» Larger means higher utility

» Utility-risk trade-off

» Final choice
» DPMPM (overall higher utility 

at the price of slightly higher 
disclosure risks)

18%
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20%
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Less desirable
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SUMMARY AND TAKEAWAYS 
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SUMMARY AND KEY TAKEAWAYS
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Weighted N is a useful approach to quantify risk

Considerations in choosing the appropriate synthesis approach

Any mitigation presents a risk-utility trade-off 

Multiple considerations in setting parameters 

1
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Thank You! 
Contact: 

Wen Qin Deng
wdeng@health.nyc.gov 
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