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Gist

• We develop formal privacy mechanisms for long-tailed data (e.g., 
establishments’ payroll, revenue, etc.)

• Reduce privacy loss for large records without clipping data (clipping 
creates bias)

• Mechanisms work by adding noise to transformations of queries or by 
adding fat-tailed noise

• But first, a quick overview of formal privacy
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Very Quick Intro to Formal Privacy - I

• Attacker wants to determine whether your record, 𝑟, is in a dataset

• Attacker knows everything except whether 𝑟 is present
• Knows value of 𝑟, knows the rest of the dataset, 𝐷0

• Is only trying to decide whether dataset is 𝐷0 or 𝐷0 ∪ {𝑟}

• Attacker’s knowledge means no inherent privacy from publishing 
statistics on large groups
• Suppose we just publish the number of observations. If dataset is 𝐷0, count is 

|𝐷0|; if dataset is 𝐷0 ∪ {𝑟}, count is 𝐷0 + 1. Attacker knows |𝐷0|, so can tell 
which dataset it is.
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Very Quick Intro to Formal Privacy - II

• Instead, add randomness to any statistic, 𝑞, from dataset and publish 
noisy statistic, ෤𝑞
• E.g., add zero-mean Gaussian random variable to 𝑞

• Attacker now tries to infer whether 𝑟 present via Bayesian reasoning, 
hypothesis testing, or similar (see, e.g., Kifer et al. (2022))

• We inhibit attacker’s inferences by ensuring that the distributions of 
෤𝑞(𝐷0) and ෤𝑞(𝐷0 ∪ {𝑟}) are similar
• Ensures either database could plausibly have generated realized ෤𝑞

• Quantify “privacy loss” with some measure of distributions’ dissimilarity
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Very Quick Intro to Formal Privacy - III

• Per-Record Zero-Concentrated Differential Privacy (PRzCDP) guarantees 
someone with record 𝑟 has privacy loss ≤ 𝑃 𝑟  (Seeman et al., 2023) 

• Definition (PRzCDP): Let 𝑓𝐷 be the PDF of ෤𝑞(𝐷) and ⊖ denote the 
symmetric set difference. ෤𝑞 satisfies 𝑃-PRzCDP iff

max
𝛼∈(1,∞); 𝐷, 𝐷′ such that 𝐷⊖𝐷′={𝑟}

1
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≤ 𝑃 𝑟 .
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Slowly Scaling Privacy Loss

• Let dataset be a single nonnegative scalar variable and 𝑞 be a sum over it (more 
general results in paper)

• 𝑃(𝑟) grows with 𝑟

• Traditional fix: cap 𝑟 at some value. Bounds privacy loss, but creates bias
• See, e.g., Covington et al. (2024)

• Unit splitting: Split 𝑟 into subrecords capped at some value, apply traditional 
mechanism, aggregate subrecords’ privacy losses (Seeman et al., 2023)
• 𝑃 𝑟 = 𝑂(𝑟2)

• Want 𝑃(𝑟) to scale more slowly with 𝑟, but without bias from capping records
• Strong protection for small 𝑟 and weaker, but still meaningful protection for large 𝑟

• We contribute two families of mechanisms with slowly scaling 𝑃(𝑟)
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Additive Mechanism - I

• Additive mechanism simply adds noise to the query from a fat-tailed distribution

• With 𝑍 ∼ 𝑓𝑍 𝑧 ∝ 𝑒−𝑓 𝑧

෤𝑞 ≡ 𝑞 + 𝑍

• 𝑓 ⋅  is a user-chosen, increasing, and concave function

• Privacy guarantee is 𝑃 𝑟 = 𝑓 𝑟 − 𝑓 0

• Choose slowly scaling 𝑓 for slowly scaling 𝑃(𝑟)
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Additive Mechanisms - II

• Generalized Gaussian noise distribution makes 𝑃 𝑟 = 𝑂(
𝑝

𝑟) for 𝑝 ≥ 1

• Exponential polylogarithmic distribution, makes 𝑃 𝑟 = 𝑂 ln 𝑟 𝑝  for 𝑝 ≥ 1

8



Transformation Mechanism - I

• With 𝑍~𝑁(0, 𝜎2), and estimator 𝑔(. ), transformation mechanism is:
෤𝑞 ≡ 𝑔(𝑓 𝑞 + 𝑍)

• Transformation mechanism transforms 𝑞 with concave function 𝑓 so 
that 𝑓(𝑞) itself scales slowly in 𝑟
• Privacy loss comes from differences in query with and without 𝑟 ⇒ if query 

scales slowly in 𝑟, privacy loss scales slowly, too

• 𝑔 is an estimator of 𝑞, using the noisy, transformed 𝑞 as input
• 𝑔 = 𝑓−1 leads to bias

• We derive mean- and median-unbiased estimators for many choices of 𝑓

• Similar idea in Webb et al. (2023) and Haney et al. (2017)
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Transformation Mechanism - II

• Privacy guarantee is 𝑃 𝑟 =
𝑓 𝑟 −𝑓(0) 2

2𝜎2 = 𝑂(𝑓 𝑟 2)

• Slowly scaling 𝑓 ⇒ slowly scaling 𝑃 𝑟

• Possible 𝑓(𝑞) include 𝑘 𝑞, ln(𝑞 + 𝑎)
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Empirical Experiments

• Simulated data based on County Business Patterns (CBP)
• CBP is annual Census series of regional establishment data

• Apply mechanisms to sums of employment, grouped by 3-digit NAICS and county

• Employment is very skewed; large values risk large privacy loss

• Transformation and additive mechanisms for 3 asymp. policy functions:

• Set variance of all mechanisms to 2 (when 𝑞 = 2, for transformation mechanisms)
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Asymptotic Policy Function (𝑷(𝒓)) Transformation Mechanism 
Transformation

Additive Mechanism Noise 
Distribution

𝑂 𝑟2 Identity Gaussian

𝑂( 𝑟) Fourth root Generalized Gaussian

𝑂(ln 𝑟 2) Log Exponential Polylogarithmic



Privacy Loss CDFs

• Each point on CDF shows % 
of records with lower privacy 
loss
• Faster growth is better

• Quickly scaling mechanisms 
better for very low privacy 
losses, but quickly lose out 
to slowly scaling mechanisms

• Transformation mechanisms 
have larger privacy loss (see 
x-axis scale)
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Conclusion

• Developed formally private mechanisms with slowly scaling privacy loss
• Unbiased mechanisms with more consistent privacy loss for large and small records

• Additive Mechanisms
• Fat-tailed distributions let privacy loss scale as slowly as log rate

• Transformation Mechanisms
• Adding noise to transformed query lets privacy scale as slowly as log-squared rate

• Further work on how to choose a specific mechanism and policy function

• Our paper is available at arxiv.org/abs/2409.18118
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