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Gist

* We develop formal privacy mechanisms for long-tailed data (e.g.,
establishments’ payroll, revenue, etc.)

* Reduce privacy loss for large records without clipping data (clipping
creates bias)

* Mechanisms work by adding noise to transformations of queries or by
adding fat-tailed noise

* But first, a quick overview of formal privacy
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Very Quick Intro to Formal Privacy - |

e Attacker wants to determine whether your record, 7, is in a dataset

» Attacker knows everything except whether 7 is present
* Knows value of 7, knows the rest of the dataset, D,
* Is only trying to decide whether dataset is Dy or Dy U {r}

» Attacker’s knowledge means no inherent privacy from publishing
statistics on large groups

* Suppose we just publish the number of observations. If dataset is D, count is

|Dy|; if dataset is Dy U {r}, countis |Dy| + 1. Attacker knows |D,|, so can tell
which dataset it is.
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Very Quick Intro to Formal Privacy - |l

* Instead, add randomness to any statistic, g, from dataset and publish
noisy statistic, g
* E.g., add zero-mean Gaussian random variable to q

* Attacker now tries to infer whether r present via Bayesian reasoning,
hypothesis testing, or similar (see, e.g., Kifer et al. (2022))

* We inhibit attacker’s inferences by ensuring that the distributions of
g(Dy) and g(Dgy U {r}) are similar
* Ensures either database could plausibly have generated realized g
e Quantify “privacy loss” with some measure of distributions’ dissimilarity
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Very Quick Intro to Formal Privacy - Il

* Per-Record Zero-Concentrated Differential Privacy (PRzCDP) guarantees
someone with record r has privacy loss < P(r) (Seeman et al., 2023)

* Definition (PRzCDP): Let f be the PDF of g(D) and © denote the
symmetric set difference. g satisfies P-PRzCDP iff

1 f <fD(x)
fpr(x)

max
a€(1,0); D, D' such that D&D'={r} C((CZ — 1)

) fpr(x)dx, < P(r).

"Privacy loss"
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Slowly Scaling Privacy Loss

* Let dataset be a single nonnegative scalar variable and g be a sum over it (more
general results in paper)

* P(r) grows with r

* Traditional fix: cap r at some value. Bounds privacy loss, but creates bias
* See, e.g., Covington et al. (2024)

* Unit splitting: Split 7 into subrecords capped at some value, apply traditional
mechanism, aggregate subrecords’ privacy losses (Seeman et al., 2023)
« P(r) =0(?)
* Want P(r) to scale more slowly with r, but without bias from capping records
e Strong protection for small r and weaker, but still meaningful protection for large r

* We contribute two families of mechanisms with slowly scaling P(7)
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Additive Mechanism - |

* Additive mechanism simply adds noise to the query from a fat-tailed distribution

e With Z ~ f;(2) o« e~f(12D

q=q+7

* f(-)is a user-chosen, increasing, and concave function

* Privacy guaranteeis P(r) = f(r) — f(0)

* Choose slowly scaling f for slowly scaling P(7)
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Additive Mechanisms - ||

* Generalized Gaussian noise distribution makes P(r) = O(Y7) forp > 1
* Exponential polylogarithmic distribution, makes P(r) = O(In(r)?) forp > 1
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Transformation Mechanism - |

« With Z~N (0, 04), and estimator g(.), transformation mechanism is:
qd=9((@)+2)
* Transformation mechanism transforms g with concave function f so
that f (q) itself scales slowly in r
* Privacy loss comes from differences in query with and without r = if query
scales slowly in 7, privacy loss scales slowly, too

* g is an estimator of g, using the noisy, transformed q as input
e g = f1leads to bias
* We derive mean- and median-unbiased estimators for many choices of f

 Similar idea in Webb et al. (2023) and Haney et al. (2017)
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Transformation Mechanism - |l

_ 2
e Privacy guarantee is P(r) = U@-1O)” _ 0(f(r)?)

202
* Slowly scaling f = slowly scaling P(r)

* Possible f(q) include %/q, In(q + a)
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Empirical Experiments

Simulated data based on County Business Patterns (CBP)
* CBPis annual Census series of regional establishment data

Apply mechanisms to sums of employment, grouped by 3-digit NAICS and county

Employment is very skewed; large values risk large privacy loss

Transformation and additive mechanisms for 3 asymp. policy functions:

Asymptotic Policy Function (P(7)) | Transformation Mechanism Additive Mechanism Noise
Transformation Distribution

0(r?) |dentity Gaussian
0(\/r) Fourth root Generalized Gaussian
0(In(r)?) Log Exponential Polylogarithmic

 Set variance of all mechanisms to 2 (when g = 2, for transformation mechanisms)
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Privacy Loss CDFs

Additive Mechanisms

* Each point on CDF shows %

of records with lower privacy .
loss ry

* Faster growth is better

0751 *

* Quickly scaling mechanisms .
better fOI’ Very IOW pnvacy gaussian

. c eneralized gaussian
losses, but quickly lose out g | .+ exponential polylog
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* Transformation mechanisms
have larger privacy loss (see
X-axis scale)
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Conclusion

* Developed formally private mechanisms with slowly scaling privacy loss
* Unbiased mechanisms with more consistent privacy loss for large and small records

* Additive Mechanisms
* Fat-tailed distributions let privacy loss scale as slowly as log rate

* Transformation Mechanisms
* Adding noise to transformed query lets privacy scale as slowly as log-squared rate

* Further work on how to choose a specific mechanism and policy function

e Our paper is available at arxiv.org/abs/2409.18118
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https://arxiv.org/abs/2409.18118
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