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Disclaimer 
The findings and conclusions of this presentation are those of the  authors and 
should not be construed to represent any official USDA or U.S. Government 
determination or policy.



Motivation

 NASS conducts the Census of Agriculture (CoA) every 5 years 
• Data published at national, state, and county levels 
• Network flow-based cell suppression system is used to protect census data 

 Advancements in statistical disclosure limitation (SDL) research since the current NASS 
disclosure control approach was developed in 1990
 NASS is currently researching different SDL methods that use cutting-edge technologies 
 One research direction focuses on exploring the application of noise-based methods to 

the CoA
• Some of these methods apply noise to only a subset of cells of a table

- Utility of data is preserved from unaltered cells
• Transparency 
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Motivation

 Differential privacy (DP) 
• Transparent
• Provides strong privacy protection
• Several desirable properties
• Utility can be affected because DP applies noise to all cells

• Some cells of a table may not require protection (i.e., non-sensitive cells) due to various  
reasons

 

Research Goal:  Explore the feasibility of applying DP methods only to a subset of cells 
identified as “sensitive” in  a table.
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Identifying Sensitive Cells

 P-percent rule (FCSM Statistical Working Paper #22, 2005)
• Cell suppression
• Let U be the cell total, U1  be the unweighted value for the largest respondent, and U2 be the 

unweighted value for the second largest respondent.  
• The cell is sensitive if R <  𝑈𝑈1 × 𝑃𝑃/100,  R = U - U1 - U2 
• P is determined by an agency

 Random Tabular Adjustment (RTA) (Stinner, 2018)
• Based on Bayesian decision theory
• Assumptions on the distributions  
• Utility is maximized while disclosure risk is bounded 

-  Disclosure control parameter 
-  Cells that require random noise are identified  
-  Random noise generated from normal distribution

- 5 -



Differential Privacy & Per-record Differential Privacy (PRDP)

 Differential privacy
• Privacy loss is bounded by the privacy budget (ℇ)
• Aggregates (total sums) are often published

-  Sensitivity, ∆𝑓𝑓, can be very large
 A few farms can influence the amount of noise due to skewness in agricultural data
 To mitigates this problem: Per-record differential privacy (PRDP) (Seeman et al., 2023; Finley et 

al., 2024)
 PRDP: improved data utility with relaxed privacy guarantee to larger farms

• Level of privacy guarantee varies from farm to farm
 Value of the privacy threshold, T, is dependent on the percentage of records that receive full DP 

guarantee 
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Example: Acreage Data by County and Commodity
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 Harvested acres by commodity tabulated for counties & state
 Six counties, seven commodities
 An internal cell represents harvested acres of a commodity for a county 
 Simulated microdata
 Respondent values for 41 of the 42 internal cells generated from a normal distribution 

with very small variances
• Contributors to these cells have very close values

- The p% rule may not identify these cells as sensitive

 20 records per cell



Distribution of Commodity Acres in Microdata
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Example: Acreage Data by County and Commodity
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 One sensitive cell according to p% rule, p=20



An Application of Cell Suppression
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  Four cells are suppressed when cell suppression is applied



An Application of RTA
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  Only one internal cell needed random noise when RTA is applied
• A total of four cells affected including 3 marginals
• Assumptions for distributions



An application of PRDP
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 All cells are altered
 𝜖𝜖 = 2 ; privacy threshold (T) was selected so that 50% of records receive full DP 

protection for each commodity

  DP mechanisms: higher noise values for sum queries on skewed data (Seeman et 
al., 2023)



Method Explored

 Given a dataset and an associated table to be protected
 Assume that some of the cells of the table are known to be non-sensitive (i.e., do not 

need protection)
 Proposed steps

• Classify cells of the table in two categories based on sensitivity 
• Apply PRDP to the sensitive cells
• Update the table by substituting only the sensitive cells with their altered values
• Quality and Risk assessment   
• Publish the table

 Marginal totals of the table may change depending on noise added to sensitive cells
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Case Study

 Table on sales of grains: 2017 CoA 
 Counties/cells sum to the state total
 Grain categories: Corn, wheat, soybeans, sorghum, barley, other grains
 Only counties with at least three farms producing a grain are included in the analysis
 Table with 378 cells including marginal totals
 P% rule to identify sensitive cells (P=15)
 33 primary & 19 secondary suppressions
 DP (Laplace noise), PRDP, and combination of P% rule & PRDP (P_PRDP) applied, 𝜖𝜖 = 2
 PRDP: 50% of farms producing a commodity will receive full DP protection
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Case Study
     Number of cells in each category of absolute percent relative difference after noise is added

% 𝑨𝑨𝑨𝑨𝑨𝑨.𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝 =
|𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 − 𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶| ∗ 𝟏𝟏𝟏𝟏𝟏𝟏

𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶
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Final Remarks

 Explored the application of combined SDL approaches to simple tables
 Utility sensitive to the method used for applying noise to the cell
 Level of privacy protection not studied

• Overall, weaker privacy protection
• Level of privacy from P_PRDP needs to be investigated

Future Work
 Assessment & quantification of disclosure risk 
 Further research on sensitivity of cells
 Application to hierarchical & linked tables
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Thank You!

                                                                

                                                               For questions: Habtamu.benecha@usda.gov
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