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Purpose & motivation

• Worker occupation is a key driver in economic growth (Violante 
2008), career progression (Yamaguchi 2011), and cross-sectional and 
intergenerational inequality (Card and DiNardo 2002, Long and Ferrie 
2013).

• Universe-level occupation data available in some countries (e.g. 
Denmark), but administrative and data collection difficulties in the 
U.S.

• Census: American Community Survey
• IRS: Form 1040 “Occupation” field
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Contribution
• Create near-universe dataset of coded worker occupations

• Match e-filed Form 1040s and 1-Year ACS

• Evaluate quality of matched IRS/ACS write-ins
• Token similarity
• Semantic similarity

• Create a Large Language Model-based autocoder mapping text write-ins 
to Census 2018 occupation codes.

• (Preliminary) Evaluate cross-sectional and longitudinal accuracy of IRS 
occupational distribution
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Data

• American Community Survey 2019 1-Year Microdata (ACS) write-ins
• IRS Tax Year 2018 Form 1040 write-ins
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ACS and IRS Occupation Prompts



Token Similarities

• Token Set Ratio: 0-100 score of similarity of two strings

• TSR(“Lawyer”, “Lawyer”) = 100
• TSR(“Clown”, “Teacher”) = 17
• TSR(“Lawyer”, “Attorney”) = 29
• TSR(“Paralegal”, “Paramedic”) = 56





Transformer-based Autocoder

• BERT (Bidirectional Encoder Representations from Transformers) 
architecture for Large Language Modeling

• Open Source LLM, pretrained on Wikipedia and the Toronto BookCorpus (3.3 billion 
words)

• Maps a text string to a numerical vector representation (“encoding”).

• Occupational coding problem estimated as a Multinomial Logit with 565 
choices

• Inputs: text writein -> BERT encoding, industry category
• Target: assigned 2018 Census occupational code (565 categories).
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Source: U.S. Census Bureau, 2019 American Community Survey 1-year 
and IRS Form 1040 Tax Year 2018

Estimation Results



Semantic Similarity

• The ACS and IRS model each predict a probability distribution

• Total Variation Distance (TVD) between them measures prediction 
disagreement

• Results from TVD broadly agree with results from token-based analysis
• Approx. 50% paired entries semantically similar, approx. 33% high quality 

semantic matches



Agency Benefits

• IRS:
• Fully coded occupational field
• Response quality control via ACS comparisons

• Census:
• Show feasibility of Open Source, Machine Learning-based occupation coding
• Improved imputes for missing records



Conclusion

• Creating a near-universe file of coded occupations from Form 1040 
write-ins is feasible when combined with ACS data.

• Economically significant information in IRS write-ins, but measurement 
challenges remain.

• Next steps: aggregation; years 2011-2018.
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